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Motivation

COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, VOL. X1, 001-14 (1960)

The Unreasonable Effectiveness of Mathematics
in the Natural Sciences

Richard Courant Lecture in Mathematical Sciences delivered at New York University,
May 11, 1959

EUGENE P. WIGNER
Princeton University

“‘and it is probable thal there is some secret here
which remains to be discovered.”” (C. S. Peirce)

There is a story about two friends, who were classmates in high school,
talking about their jobs. One of them became a statistician and was working
on population trends. He showed a reprint to his former classmate. The
reprint started, as usual, with the Gaussian distribution and the statistician
explained to his former classmate the meaning of the symbols for the actual
population, for the average population, and so on. His classmate was a
bit incredulous and was not quite sure whether the statistician was pulling
his leg. “How can you know that?”’ was his query. “And what is this
symbol Here?”” “Oh,” said the statistician, “this is z.”” “What is that?”
“The ratio of the circumference of the circle to its diameter.” “Well, now
you are pushing your joke too far,” said the classmate, “surely the pop-
ulation has nothing to do with the circumference of the circle.”

Naturally, we are inclined to smile about the simplicity of the cl: ’s
approach. Nevertheless, when I heard this story, I had to admit to an
eerie feeling because, surely, the reaction of the classmate betrayed only
plain common sense. I was even more confused when, not many days later,
someone came to me and expressed his bewilderment! with the fact that
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aim is to illuminate it from several sides. The first point is that the enormous
usefulness of mathematics in the natural sciences is something bordering on
the mysterious and that there is no rational explanation for it. Second, it is
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Let me end on a more cheerful note. The miracle of the appropriate-~
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physics is a wonderful gift which we neither understand nor deserve. We
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Persistent homology (PH)

PH of X captures the persistence of k-dimensional cycles:

connected components
holes

voids

in the filtration, a nested family of spaces K1 C Kr C --- C K,
which approximate X at different scales r € R.
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Problems [1]

Number of holes
Point clouds in R? and R3 sampled from 20 different shapes.

Point clouds in R? and R3 sampled from unit disks on manifolds

with constant curvature K € [-2,2].

Point clouds in R? sampled from convex and concave shapes. l
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Problems [1]

Number of holes

Point clouds in R? and R3 sampled from 20 different shapes.

Expectation: PH > DL

Point clouds in R? and R3 sampled from unit disks on manifolds
with constant curvature K € [-2,2].

Expectation: PH > DL

Point clouds in R? sampled from convex and concave shapes. l

Expectation: both methods fail
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PH pipeline
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Results: train = standard, test = standard or noisy

PH simple
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Intermezzo: Noise robustness of PH across filtrations and signatures [2]
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Curvature
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Motivation [3]

Consider equilateral triangles with circumcircle of radius 1.

e Hyperbolic: death/birth = 1.119
e Euclidean: death/birth = 2//3 = 1.155
e Spherical: death/birth = 1.225
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PH pipeline
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Convexity
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PH pipeline

Idea

0-dim PH (connected components) wrt height filtration:
= 1 connected component => convex

> 1 connected component =- concave
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PH pipeline

Idea

0-dim PH (connected components) wrt height filtration:
= 1 connected component => convex

> 1 connected component =- concave

A N $i——

point cloud image [height filtration function, from 9 directions]
maximum lifespan of the 2nd most per- - —
SVM sisting cycle, across 9 directions } [O_d'm PD, from 9 dlrectlons]

0.63 = max{0.63,0.3,0.21, ...,0.00, 0.00} / /
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Results

PH
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NN shallow
NN deep
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train = regular, train = random, train = regular, train = random,
test=regular test=random test=random test=regular
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Results: Wrong prediction

P ~N) @

... but we can always add a few additional height filtration

directions!

17



Take-aways

The experimental results demonstrate that PH can detect the number of
holes, curvature and convexity, and further allow us to:

delineate guidelines for applications of PH, and

draw a better understanding of the topology and geometry captured
by long and short persistence intervals.

(Betti Sk) number of -
t convexit
k-dimensional cycles ( curvatre ) [ Yy j
filtered Vietoris-Rips height-filtered
simplicial complex cubical complex

longest k- many short 0- and second longest
dimensional cycles 1-dimensional cycles 0-dimensional cycle

‘ SIGNATURE ‘ ‘ FILTRATION ‘ ‘ SIGNAL ‘
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Number of holes: Examples
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Number of holes: Examples
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The lifespans of 10 most persisting 1-dim cycles (holes):
circle = [0.95, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00 ]
rose = [0.25, 0.25, 0.24, 0.24, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00 ]



Alpha instead of Rips simplicial complex to tackle computational difficulties
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Alpha instead of Rips simplicial complex to tackle computational difficulties
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An example point cloud X C R? with 500 points:
Simplicial complex Vietoris-Rips  alpha
Number of simplices 20833750 1995
Simplicial complex runtime  22.07s 0.04s

PDs runtime 34.56s 0.00s




Density-aware filtration function to tackle outliers
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Density-aware filtration function to tackle outliers
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Filtration function  Distance DTM

f(x) d(x,X) =0 average distance from k neighbors
f(x,y) d(x,y) max{f(x), f(y), d(x,y)/2}




Number of holes: 1-dim PH wrt binary filtration function on cubical complex
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Number of holes: 1-dim PH wrt

nary filtration function on cubical complex
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With this filtration, PH captures homological information - the number, and

not the size of the holes!




Number of holes: 1-dim PH wrt binary filtration function on cubical complex
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With this filtration, PH captures homological information - the number, and
not the size of the holes! ... but the sampling needs to be very dense, and
what about point clouds in X C R3?



Convexity: Example
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Convexity: Example
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The lifespans of the 2nd most persisting 0-dim cycle (connected component)
across 9 height filtration function directions:
convex = [0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00 ]
concave = [0.21, 0.58, 0.16, 0.00, 0.00, 0.05, 0.00, 0.00, 0.20 ]

Signature: Maximum lifespan across 9 directions.



Convexity: 1-dim PH wrt distance filtration function on alpha complex
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Convexity: 1-dim PH wrt distance filtration function on alpha complex
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1-dim PH (holes) wrt Vietoris-Rips filtration:

= 0 holes = convex

> 1 holes = concave



Convexity: 1-dim PH wrt distance filtration function on alpha complex

Point cloud X K_0.00 K_0.25 0-dim PD 1-dim PD
10 10 10
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1-dim PH (holes) wrt Vietoris-Rips filtration:

= 0 holes = convex

> 1 holes = concave

The hole starts gradually closing before it ever opens.



Convexity: 1-dim PH wrt distance filtration function on alpha complex

Point cloud X K_0.00 K_0.25 0-dim PD 1-dim PD
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1-dim PH (holes) wrt Vietoris-Rips filtration:

= 0 holes = convex
> 1 holes = concave
The hole starts gradually closing before it ever opens. We could add convex

hull so that an actual hole would appear for concave shapes, but in this way we
consider additional elements next to PH.



Convexity: 0-dim PH wrt height filtration function on alpha complex
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Convexity: 0-dim PH wrt height filtration function on alpha complex
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0-dim PH (connected components) wrt height filtration:

= 1 connected component = convex

> 1 connected component =- concave
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Convexity: 0-dim PH wrt height filtration function on alpha complex
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0-dim PH (connected components) wrt height filtration:

= 1 connected component = convex

> 1 connected component =- concave

Not ideal, since concave parts also connect between themselves into a single
connected component! In addition, computational difficulty due to a huge
number of pairs of points within small distance.
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