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“‘and it is probable thal there is some secret here
which remains to be discovered.” (C. S. Peirce)

There is a story about two friends, who were classmates in high school,
talking about their jobs. One of them became a statistician and was working
on population trends. He showed a reprint to his former classmate. The
reprint started, as usual, with the Gaussian distribution and the statistician
explained to his former classmate the meaning of the symbols for the actual
population, for the average population, and so on. His classmate was a
bit incredulous and was not quite sure whether the statistician was pulling
his leg. “How can you know that?”’ was his query. “And what is this
symbol Here?”” “Oh,” said the statistician, “this is z.”” “What is that?”
“The ratio of the circumference of the circle to its diameter.” “Well, now
you are pushing your joke too far,” said the classmate, “surely the pop-
ulation has nothing to do with the circumference of the circle.”

Naturally, we are inclined to smile about the simplicity of the cl: 's
approach. Nevertheless, when I heard this story, I had to admit to an
eerie feeling because, surely, the reaction of the classmate betrayed only
plain common sense. I was even more confused when, not many days later,
someone came to me and expressed his bewilderment! with the fact that




Persistent homology (PH)

PH of X captures the persistence of k-dimensional cycles:

connected components
holes

voids

in the filtration, a nested family of spaces K1 C K, C --- C K,

which approximate X at different scales r € R.



Persistent homology (PH)

PH of X captures the persistence of k-dimensional cycles:

connected components
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voids

in the filtration, a nested family of spaces K1 C K, C --- C K,
which approximate X at different scales r € R.
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Problems
Number of holes
Point clouds in R? and R3 sampled from 20 different shapes.

Point clouds in R? and R3 sampled from unit disks on manifolds

with constant curvature K € [-2,2].

Point clouds in R? sampled from convex and concave shapes. l
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Problems

Number of holes

Point clouds in R? and R3 sampled from 20 different shapes.

Expectation: PH > DL

Point clouds in R? and R3 sampled from unit disks on manifolds
with constant curvature K € [-2,2].

Expectation: PH > DL

Point clouds in R? sampled from convex and concave shapes. l

Expectation: both methods fail
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PH pipeline

alpha simplicial complex (due to computational difficulties)
Distance-to-Measure filtration function (due to outliers)
1-dimensional persistence diagram

sorted lifespans, persistence images, persistence landscapes

support vector classification



Example
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Example
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The lifespans of 10 most persisting 1-dim cycles (holes):
circle = [0.95, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00 ]
rose = [0.25, 0.25, 0.24, 0.24, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00 ]



Results: train = standard, test = standard or noisy

PH simple
PH

ML

NN shallow
NN deep
PointNet

accuracy

0z

original translation rotation stretch shear gaussian outliers



Curvature
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Motivation (BHPW20)

Consider equilateral triangles with circumcircle of radius 1.

e Hyperbolic: death/birth = 1.119
e Euclidean: death/birth = 2//3 = 1.155
e Spherical: death/birth = 1.225
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PH pipeline

hyperbolic, euclidean, spherical distance matrix
Vietoris-Rips simplicial complex

distance filtration function

0- and 1-dimensional persistence diagram

sorted lifespans, persistence images, persistence landscapes

support vector regression
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Convexity
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PH pipeline

Idea

0-dim PH (connected components) wrt height filtration:
=1 connected component = convex

> 1 connected component = concave
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PH pipeline

Idea

0-dim PH (connected components) wrt height filtration:
=1 connected component = convex

> 1 connected component = concave

cubical complex

height filtration function, from 9 different v
directions

. . . . —» “—
0-dimensional persistence diagrams
maximum lifespan of the second most ?

persisting cycle, across 9 directions

support vector classification
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Example
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Example

K_0.40 K_0.50 0-dim PD
40

0 10730 30 40

=
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an 0= 1n

K_0.50 0-dim PD

The lifespans of the 2nd most persisting 0-dim cycle (connected component)
across 9 height filtration function directions:

convex [ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00 ]
[ 0.21, 0.58, 0.16, 0.00, 0.00, 0.05, 0.00, 0.00, 0.20 ]

concave

Signature: Maximum lifespan across 9 directions.
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Results

train=regular, test=regular train=random, test=random
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Results: Wrong prediction

An example of a shape whose concavity might be tricky for current
PH pipeline:

i= 66, label = 0.0
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Results: Wrong prediction

An example of a shape whose concavity might be tricky for current
PH pipeline:

i= 66, label = 0.0

04
0z
0o

-025 000 025 050 075 100 125

... but we can always add a few additional height filtration
directions!
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Alpha instead of Rips simplicial complex to tackle computational difficulties
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Alpha instead of Rips simplicial complex to tackle computational difficulties
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An example point cloud X C R? with 500 points:
Simplicial complex Vietoris-Rips  alpha
Number of simplices 20833750 1995
Simplicial complex runtime  22.07s 0.04s

PDs runtime 34.56s 0.00s




Density-aware filtration function to tackle outliers
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Density-aware filtration function to tackle outliers
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Filtration function  Distance DTM

f(x) d(x,X) =0 average distance from k neighbors
f(x,y) d(x,y) max{f(x), f(y), d(x,y)/2}




Number of holes: 1-dim PH wrt binary filtration function on cubical complex
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Number of holes: 1-dim PH wrt

nary filtration function on cubical complex
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With this filtration, PH captures homological information - the number, and

not the size of the holes!




Number of holes: 1-dim PH wrt binary filtration function on cubical complex
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With this filtration, PH captures homological information - the number, and
not the size of the holes! ... but the sampling needs to be very dense, and
what about point clouds in X C R3?



Convexity: 1-dim PH wrt distance filtration function on alpha complex
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Convexity: 1-dim PH wrt distance filtration function on alpha complex
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1-dim PH (holes) wrt Vietoris-Rips filtration:

@ = 0 holes = convex

@ > 1 holes = concave



Convexity: 1-dim PH wrt distance filtration function on alpha complex
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1-dim PH (holes) wrt Vietoris-Rips filtration:

@ = 0 holes = convex

@ > 1 holes = concave

The hole starts gradually closing before it ever opens.



Convexity: 1-dim PH wrt distance filtration function on alpha complex

Point cloud X K_0.00 K_0.25 0-dim PD 1-dim PD

00 05 10 00 05 10

0-dim PD 1-dim PD

1-dim PH (holes) wrt Vietoris-Rips filtration:

@ =0 holes = convex
@ > 1 holes = concave
The hole starts gradually closing before it ever opens. We could add convex

hull so that an actual hole would appear for concave shapes, but in this way we
consider additional elements next to PH.



Convexity: 0-dim PH wrt height filtration function on alpha complex
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Convexity: 0-dim PH wrt height filtration function on alpha complex
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0-dim PH (connected components) wrt height filtration:

@ =1 connected component = convex

@ > 1 connected component =- concave



Convexity: 0-dim PH wrt height filtration function on alpha complex
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0-dim PH (connected components) wrt height filtration:

@ =1 connected component = convex

@ > 1 connected component =- concave



Convexity: 0-dim PH wrt height filtration function on alpha complex
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0-dim PH (connected components) wrt height filtration:

@ =1 connected component = convex

@ > 1 connected component =- concave

Not ideal, since concave parts also connect between themselves into a single
connected component! In addition, computational difficulty due to a huge
number of pairs of points within small distance.
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