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For a given data X (e.g., a point cloud or an image), persistent homology (PH) captures information about k-dimensional cycles
(connected components, holes, voids, ...) in the so-called filtration, a nested family { K, },cr of topological spaces which approximate
X at different scales € R. PH can be seen as a multi-set of persistence intervals |b, d|, where b is the scale r where a topological
feature (a k-dimensional cycle) is born, and d is the scale  when the feature dies in the filtration, and it can be represented by a

variety of signatures.

We consider 20 different shapes in R? and R, with four different shapes having the
same number of holes (0,1,2,4 or 9). For each shape, we construct 50 point clouds
each consisting of 1000 points sampled from a uniform distribution over the shape,
resulting in a balanced dataset of 1000 = 20 x 50 point clouds.
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We train the classifier on 80% of the original point clouds, and test on the remaining
20% of original or noisy data. The results show that PH obtains very good test
accuracy on this classification task, even in the presence of affine transformations or
noise, outperforming baseline machine- and deep-learning techniques.

PH simple
PH

ML

NN shallow
NN deep
PointNet

accuracy

translation rotation stretch shear gaussian outliers

original

Conclusions

A number of longest persistence intervals reflects the topology of data (Betti numbers
By, the numbers of k-dimensional cycles), and the additional PH information on the birth
and death values of the topological features can reveal different geometric properties such
as curvature or convexity, depending on the choice of filtration and signature.
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A balanced dataset of point clouds with 500 points sampled from unit disks D on
manifolds of constant negative, zero or positive curvature K is constructed as in
[1]. The label of a point cloud is the curvature K of the underlying disk Dy
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What can you use persistent homology for?

There have been numerous successful applications of PH in the last decade, but the reasons behind these successes are not yet well
understood. The data used in real-world applications is complex, so that there are numerous effects at play and one is often left
unsure why PH worked, i.e., what type of topological or geometric information it captured that facilitated the good performance.
To initiate an investigation into the effectiveness of PH, or in other words, to investigate what is seen by PH, we set out to identify
some fundamental data-analysis tasks that can be solved with PH.

Curvature

We construct a balanced dataset by sampling 5000 points from con-
vex and concave shapes in R?. A point cloud has label 1 if it is

sampled from a convex shape, and 0 otherwise.

"he mean squared errors (MSE) and the regression lines show that PH indeed
detects curvature, outperforming other methods. We also see that the performance
drops if we only focus on the longest 10 intervals (PH simple 10), so that the many

short intervals together capture the geometry of interest for this problem.

convexity

0-dim PH 0-dim PH simple 0-dim PH simple 10
E ] -.":'-.z- 2] ‘11 12 * .‘.{.j
so 0 WAl @)y R
© | o | ‘o
B 0.0 i’. 0.0 g.. ® 0.0 4 o..
S ol aae o] ok ol B2
MSE = 0.06 MSE = 0.06 MSE = 0.25
1-dim PH 1-dim PH simple 1-dim PH simple 10
= 159 . o _
ES <N I WY S E
g 0:5— ..F.oo ¢ 0:5— .i.ﬁ ' 0:5— ..&%. . |
Q o00- o b 0.0 - ¢ 0.0 -
L 051 p -05- o9* e —0.5 A o
Pue® | W e
MSE = 0.20 MSE = 0.34 MSE = 0.33
ML NN deep PointNet
© 154 1.5 - 1.5
e I ¥ I s Fa
E 0.0 . ¢ 0.0 0.0 ; i‘
g —-0.5 .. o ° —0.5 1 ° —-0.5 1 s
-03 -1.0 % ’;.‘ —1.0#*.“ -1.0- >
o -1.5 _I | | -1.5 i | | -1.5 _A_I | . |
True label True label True label
MSE = 0.31 MSE = 0.93 MSE = 320.38
Summary of guidelines
= ;
< (Be’Ftl 5/%)_ number of [ Curvature ] [
O k-dimensional cycles
N
=
O
= : : ..
< Rips simplicial complex, Rips simplicial complex,
— filtered by euclidean distance filtered by geodesic distance filtered by tubular function
L
L
=
; : many short 0- and 1-
> [Iongest k-dimensional cycles] { e } [
= dimensional cycles
O
N

cubical complex,

|

second longest (-
dimensional cycle

> A -

The classification accuracies under different conditions (with differ-
ent train and test data) show that PH is able to detect convexity,
outperforming other baseline methods.
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Theorem

Let X C R? be triangulizable. We have that X is convex if and
only if for every line o in R? the 0-dimensional PH with respect to
the tubular filtration function 7,: R? — R, 7,(z) = dist(z, a),
contains exactly one persistence interval.

We also demonstrate that PH can detect a measure of convexity in
the FLAVIA [2] image dataset of plant leaves.
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