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Persistent homology



Homology & Betti numbers /3

Homology captures information about k-dimensional cycles:

» connected components (0-dimensional homology)
» holes (1-dimensional homology)

» voids (2-dimensional homology)

»
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Persistent homology = Homology of data

Persistent homology (PH), describes the shape of an object (a point cloud,
an image, a time series, a network, etc), i.e., it captures information about
k-dimensional cycles which persist across different scales r € R.
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Figure taken from Munch, Elizabeth, A user's guide to topological data analysis, Journal of Learning Analytics 4.2
(2017): 47-61.



Stability theorems

The black and the noisy red circle have similar persistence diagrams.

1 .
u
1.6)
1.0)
14
°
0.5] 1.2
0.0
0.5 0.6
0.4
-10)
0.2)
1 og
ST ~io 05 9.0 05 0 15 00 02 04 06 12 14 16 8

Figure taken from Munch, Elizabeth, A user’s guide to topological data analysis, Journal of Learning Analytics 4.2
(2017): 47-61.
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1 Stability theorem: d(PS(¢), PS(¢)) < cl||¢ — ||» J




Noise robustness of PH
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Noise robustness of PH features in a classification task
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node size = accuracy on the non-noisy test data
node color = drop in SVM classification accuracy when the test dataset is noisy,
compared to the non-noisy test set (red indicates significant performance loss)



Noise robustness of PH features in a classification task

For SVM trained on non-noisy and tested on noisy images, there is at
least a 30% drop in accuracy compared to non-noisy test data, for at least
0- or 1-dimensional PH, for at least one of the considered signatures:

rotation and translation: radial
stretch-shear-flip: radial, Rips, DTM
brightness and contrast: greyscale
gaussian: greyscale

salt and pepper: binary, greyscale, density, radial, Rips, DTM

vy v v v v VY

shot: binary, greyscale, density, radial, Rips, DTM,

often varying across PDs, PLs and Pls.



> noise sensitivity of PH is influenced by the
choice of filtration and persistence
signature (input and output of PH)

» PH features are not always robust under
any type of noise in a classification task
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