Distance-from-flat persistent homology transforms:
Shoving tubes through shapes gives a sufficient and efficient shape descriptor
Adam Onus, Nina Otter, Renata Turkes
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PHT. /(X) > pn P — (PDo(X, fr), PD1(X, /), ..., PDp_1(X, f))
Distance-from-flat persistent homology transform

PHT, . (y m o(X) AG(m.n) = D" P s (PDo(X, dp), PD1(X, dp),...,PDn_1(X, dp))

PHT G(m,n),a: truncated to homological degrees {0, 1,.. ., m — 1} is injective, i.e. N

PHT ¢ (m,n),a(X)|{0,1,...m—1} is a sufficient and efficient shape descriptor
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Idea

0-dim PH (connected components) wrt height filtration:
= 1 connected component = convex

> 1 connected component = concave
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Motivation: Can PH detect convexity?
Step 2) Adjustment: From height to tubular filtration
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height absolute height tubular
scalar product distance from hyperplane distance from line
n(x) =x-v n(x)=lx-vi=d(x,a)  Ta(x)=d(x,q)

RT, Guido Montufar and Nina Otter, On the effectiveness of persistent homology, NeurlPS (2022)
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train = regular, train = random,
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RT, Guido Montufar and Nina Otter, On the effectiveness of persistent homology, NeurlPS (2022)
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Motivation: Can PH detect convexity?
Step 3) Generalization: From m =1 to any m
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Tubular, distance-from-line PHT yg(1,n),al0 that shoves tubes through shapes is
a sufficient and efficient shape descriptor, but one can consider distance from
any m-dimensional flat.
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The distance-from-flat PHT ysg(m,n),a has a computational advantage over the
classical, height PHTgn-1 ,, as it is sufficient to calculate less homological degrees
k to completely capture the shape; this is more pronounced for lower m.
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Theorem (Injectivity of PHTp ¢)

Let X C R" be a constructible set, P a definable set, and fp: X — R a definable
function for every P € P. If

(i) Euler characteristic of r-level sets, where r takes any value in some
R C R, completely describes the shape, i.e., the following map is injective

CS(R") — CF(P x R)
X = ((Pyr) = x(X:(fe)))

(ii) for every r € R, the Euler characteristic of the r-level set X.(fp) can be
computed from Euler characteristics of sublevel sets in R™,

then PHTp ¢, truncated to homological degrees k € {0,1,...,m — 1},
is injective.



PHT g (m,n).a is injective: Proof outline

PHT5 ¢(X)

BT (vP e P)(Vk € {0,...,n—1}) : PDk(X, fp)

L (WP eP)(Vke{0,....,n—1})(Vr € R) : Bu(X; (fp))
2

i

(VP € P)(Vr € R) : x(X; (fp))
(VP € P)(Vr € R) : x(X:(fp))
X.
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PHT AG(m,n),a is injective

For distance-from-flat , R = {0}, and:

(i) x(X N P) completely describes the shape, due to Schapira's
inversion formula for Radon transform,

(i) x(X N P) can be calculated from PH, since zero-level sets of
dp are zero-sublevel sets.



PHT 4G (m,n),a(X) is continuous

PHT: PHTg 1,  PHTac(mn.a
fp : X — R is (Lipschitz) continuous V) v V) v
f: P — C(X,R) is (Lipschitz) continuous V) v x) v
PHT(X) : P — D" is (Lipschitz) continuous V) v x) v
PHT : CS(X) — C(P,D") is (Lipschitz) continuous  (X) X (x) x

One can think of four “levels” of continuity within the context of PHT. The
continuity of fp and f together imply the continuity of PHT(X). The Lipschitz
continuity of f ensures the Lipschitz continuity of PHT(X).



PHT AG(m,n),a is not continuous
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PHT AG(m,n),a is not continuous
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A small shape perturbation can yield a large change in PHT:

d(X7 X/) < 67
W, (PD1 (X, dp), PD1(X’, dp)) = co.
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PHT jcimma(X) = PDuX.dp) = x(XNP) = X



The peculiar case of radial PHT yg(9.n) 4

PHTpg(mn,a(X) = PDk(X,dp) = x(XNP) = X

When m = 0, it is redundant to calculate PH, since XN P is a
singleton or an empty set, hence x(XNP)=1or x(XNP)=0.
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For the example shape, the lines that pass through the origin (such as the line
P = ¢ € G(1,2)) can recover the loops, but even after realignment or re-
centering, we would need at least one affine line (such as the dashed line = ¢; €
AG(1,2) or the dotted line = ¢ € AG(1,2)) to recover the two dents.



Convexity detection: PHT s (1. .4l0 pipeline

7 :
B " Y y
point cloud image [tubular filtration, for 9 Iinesj

SUM maximum lifespan of the 2nd most ' l .
persisting cycle, across 9 lines 0-dim PD, for 9 lines

0.63 = max{0.63,0.3,0.21, ..., 0.00,0.00} /

N

RT, Guido Montufar and Nina Otter, On the effectiveness of persistent homology, NeurlPS (2022)



Convexity detection: Computational resources
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Where to go from here

Sufficient (number of) flats for injectivity.
Computational trade-off for PHT yg(m,ny,q for different m, and PHTgn-1 .
Discontinuity of PHT sg(m,n),d-

Further parameter spaces for Euclidean shapes.
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Beyond Euclidean shapes.
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