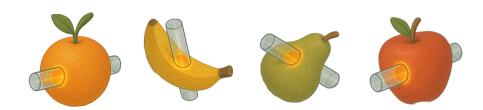
Distance-from-flat persistent homology transforms:

Shoving tubes through shapes gives a sufficient and efficient shape descriptor Adam Onus, Nina Otter, Renata Turkeš



 $\{f\} \to \mathcal{D}$ $f \mapsto \mathrm{PD}_k(X, f)$

$$\mathrm{PH}_k(X)$$
 $f \mapsto \mathrm{PD}_k(X, f)$

 $\operatorname{PH}_k(X)$ gives some information about the topology & geometry of the shape

$$\mathrm{PH}_k(X)$$
 $\{f\} \to \mathcal{D}$ $f \mapsto \mathrm{PD}_k(X, f)$

 $\operatorname{PH}_k(X)$ gives some information about the topology & geometry of the shape

Classical, height persistent homology transform [Turner, Mukherjee & Boyer (2014)] $PHT_{\mathbb{S}^{n-1},h}(X) \qquad \mathbb{S}^{n-1} \to \mathcal{D}^n \qquad v \mapsto (PD_0(X,h_v),PD_1(X,h_v),\dots,PD_{n-1}(X,h_v))$

$$\mathrm{PH}_k(X)$$
 $f \mapsto \mathrm{PD}_k(X, f)$

 $\operatorname{PH}_k(X)$ gives some information about the topology & geometry of the shape

Classical, height persistent homology transform [Turner, Mukherjee & Boyer (2014)] $\mathrm{PHT}_{\mathbb{S}^{n-1},h}(X) \qquad \mathbb{S}^{n-1} \to \mathcal{D}^n \qquad \qquad v \mapsto (\mathrm{PD}_0(X,h_v),\mathrm{PD}_1(X,h_v),\ldots,\mathrm{PD}_{n-1}(X,h_v))$

 $\mathrm{PHT}_{\mathbb{S}^{n-1},h}$ is injective, i.e.

 $\operatorname{PHT}_{\mathbb{S}^{n-1},h}(X)$ is a sufficient shape descriptor

 $PH_k(X)$ gives some information about the topology & geometry of the shape

 $\{f\} \to \mathcal{D}$ $f \mapsto \operatorname{PD}_k(X, f)$ $PH_{k}(X)$

Classical, height persistent homology transform [Turner, Mukherjee & Boyer (2014)] $\mathbb{S}^{n-1} \to \mathcal{D}^n$ $PHT_{\mathbb{S}^{n-1}}h(X)$ $v \mapsto (PD_0(X, h_v), PD_1(X, h_v), \dots, PD_{n-1}(X, h_v))$

 $PHT_{\mathbb{S}^{n-1},h}$ is injective, i.e.

 $PHT_{\mathbb{S}^{n-1},h}(X)$ is a sufficient shape descriptor

Generalised persistent homology transform [Onus, Otter & Turkeš (2024)]
$$\mathrm{PHT}_{\mathbb{P},f}(X) \qquad \mathbb{P} \to \mathcal{D}^n \qquad P \mapsto (\mathrm{PD}_0(X,f_P),\mathrm{PD}_1(X,f_P),\ldots,\mathrm{PD}_{n-1}(X,f_P))$$

$$P \mapsto (PD_0(X, f_{p}), PD_1(X, f_{p}), \dots, PD_{n-1}(X, f_{p}))$$

$$\mathrm{PH}_k(X)$$
 $\{f\} \to \mathcal{D}$ $f \mapsto \mathrm{PD}_k(X, f)$

 $\operatorname{PH}_k(X)$ gives some information about the topology & geometry of the shape

Classical, height persistent homology transform [Turner, Mukherjee & Boyer (2014)] $PHT_{\mathbb{S}^{n-1},h}(X) \qquad \mathbb{S}^{n-1} \to \mathcal{D}^n \qquad v \mapsto (PD_0(X,h_v),PD_1(X,h_v),\dots,PD_{n-1}(X,h_v))$

$$PHT_{\mathbb{S}^{n-1},h}$$
 is injective, i.e.

 $PHT_{\mathbb{S}^{n-1},h}(X)$ is a sufficient shape descriptor

Generalised persistent homology transform [Onus, Otter & Turkeš (2024)]

$$\operatorname{PHT}_{\mathbb{P},f}(X) \hspace{1cm} \mathbb{P} \to \mathcal{D}^n \hspace{1cm} P \mapsto \left(\operatorname{PD}_0(X,f_P),\operatorname{PD}_1(X,f_P),\ldots,\operatorname{PD}_{n-1}(X,f_P)\right)$$

Distance-from-flat persistent homology transform

$$\operatorname{PHT}_{\mathbb{AG}(m,n),d}(X) \quad \mathbb{AG}(m,n) \to \mathcal{D}^n \quad P \mapsto \left(\operatorname{PD}_0(X,d_P),\operatorname{PD}_1(X,d_P),\dots,\operatorname{PD}_{n-1}(X,d_P)\right)$$

$$\mathrm{PH}_k(X)$$
 $\{f\} \to \mathcal{D}$ $f \mapsto \mathrm{PD}_k(X, f)$

 $\mathrm{PH}_k(X)$ gives some information about the topology & geometry of the shape

Classical, height persistent homology transform [Turner, Mukherjee & Boyer (2014)]

$$\operatorname{PHT}_{\mathbb{S}^{n-1},h}(X) \qquad \mathbb{S}^{n-1} \to \mathcal{D}^n \qquad \qquad v \mapsto \left(\operatorname{PD}_0(X,h_v),\operatorname{PD}_1(X,h_v),\dots,\operatorname{PD}_{n-1}(X,h_v)\right)$$

 $PHT_{\mathbb{S}^{n-1},h}$ is injective, i.e.

 $\operatorname{PHT}_{\mathbb{S}^{n-1},h}(X)$ is a sufficient shape descriptor

Generalised persistent homology transform [Onus, Otter & Turkeš (2024)]

$$\mathrm{PHT}_{\mathbb{P},f}(X) \qquad \qquad \mathbb{P} \to \mathcal{D}^n \qquad \qquad P \mapsto (\mathrm{PD}_0(X,f_P),\mathrm{PD}_1(X,f_P),\ldots,\mathrm{PD}_{n-1}(X,f_P))$$

Distance-from-flat persistent homology transform

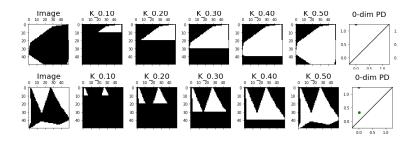
$$\operatorname{PHT}_{\mathbb{AG}(m,n),d}(X) \quad \mathbb{AG}(m,n) \to \mathcal{D}^n \quad P \mapsto \left(\operatorname{PD}_0(X,d_P),\operatorname{PD}_1(X,d_P),\dots,\operatorname{PD}_{n-1}(X,d_P)\right)$$

 $\mathrm{PHT}_{\mathbb{AG}(m,n),\mathrm{d}}$, truncated to homological degrees $\{0,1,\ldots,m-1\}$ is injective, i.e. $\mathrm{PHT}_{\mathbb{AG}(m,n),\mathrm{d}}(X)|_{\{0,1,\ldots,m-1\}}$ is a sufficient and efficient shape descriptor

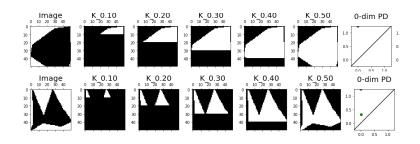
Motivation: Can PH detect convexity?

Motivation: Can PH detect convexity? Step 1) First idea: Classical, height $PHT_{\mathbb{S}^{n-1},h}|_0$

Motivation: Can PH detect convexity? Step 1) First idea: Classical, height $PHT_{\mathbb{S}^{n-1},h}|_0$



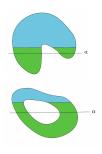
Motivation: Can PH detect convexity? Step 1) First idea: Classical, height $PHT_{\mathbb{S}^{n-1},h}|_0$

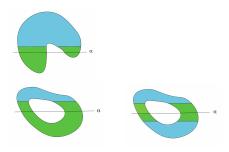


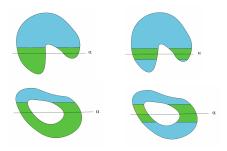
Idea

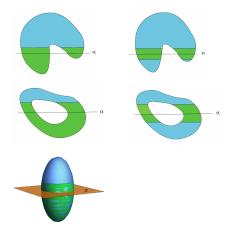
0-dim PH (connected components) wrt height filtration:

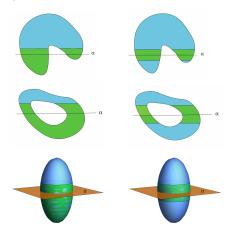
- =1 connected component \Rightarrow convex
- > 1 connected component \Rightarrow concave

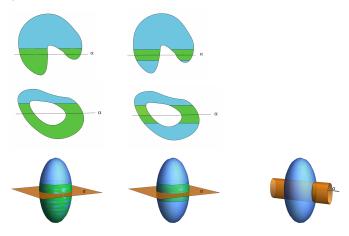


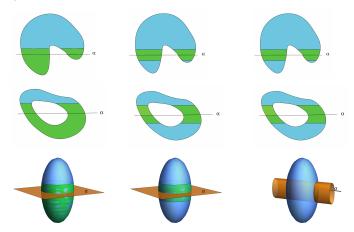


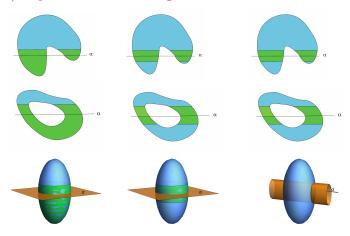




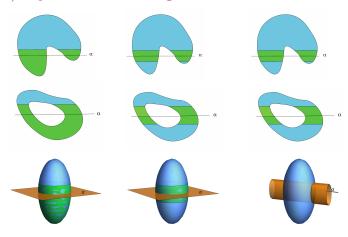






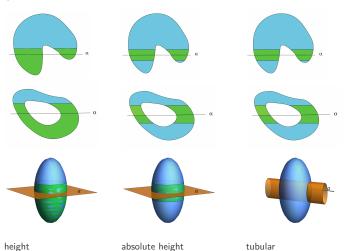


height scalar product $\eta_{v}(x) = x \cdot v$



height scalar product $\eta_{\nu}(x) = x \cdot \nu$

absolute height distance from hyperplane $\eta'_{\nu}(x) = |x \cdot \nu| = d(x, \alpha)$



distance from hyperplane

 $\eta'_{v}(x) = |x \cdot v| = d(x, \alpha)$

distance from line

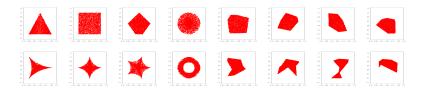
 $\tau_{\alpha}(x) = d(x, \alpha)$

RT, Guido Montufar and Nina Otter, On the effectiveness of persistent homology, NeurIPS (2022)

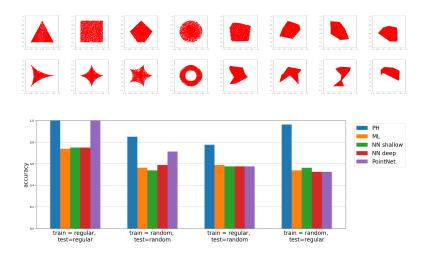
scalar product

 $\eta_{V}(x) = x \cdot V$

Intermezzo: Tubular PHT outperforms NNs



Intermezzo: Tubular PHT outperforms NNs



RT, Guido Montufar and Nina Otter, On the effectiveness of persistent homology, NeurIPS (2022)

Motivation: Can PH detect convexity? Step 3) Generalization: From m = 1 to any m

Motivation: Can PH detect convexity? Step 3) Generalization: From m = 1 to any m

f_P	Filtration	$PH(X, f_P)$
classical (height)	\$1.00 \$2.00	
slabbed (distance-from- hyperplane)	\$1.00 \$1.00	
tubular (distance-from-line)	X ₁₀₀ X ₄₁₀ X ₄₀₀ X ₅₁₀ X ₅₁₀ X ₁₀₀ X ₄₁₀ X ₄₁₀ X ₅₁₀	

Motivation: Can PH detect convexity? Step 3) Generalization: From m = 1 to any m

f_P	Filtration	$ $ $PH(X, f_P)$
classical (height)	X ₁₀₀ X ₄₄₀ X ₁₀₀ X ₁₀₀ X ₁₀₀ X ₂₀₀ X ₄₄₀ X ₄₀₀ X ₁₀₀ X ₁₀₀	
slabbed (distance-from- hyperplane)	\$\begin{array}{cccccccccccccccccccccccccccccccccccc	
tubular (distance-from-line)	\$1.00 \$1.00	

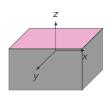
Tubular, distance-from-line $\mathrm{PHT}_{\mathbb{AG}(1,n),\mathrm{d}}|_0$ that shoves tubes through shapes is a sufficient and efficient shape descriptor, but one can consider distance from any m-dimensional flat.

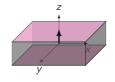
Summary

m	Name	\mathbb{P}	f_P	k	$\dim(\mathbb{P})$
-	height PHT	$\mathbb{S}^{n-1}=$ sphere in \mathbb{R}^n	h_{V}	$0, 1, \dots, n-1$	n - 1
n - 1	slabbed PHT	$\mathbb{AG}(\mathit{n}-1,\mathit{n}) = hyperplanes \ in \ \mathbb{R}^\mathit{n}$	d_P	$0, 1, \ldots, n-2$	n
1 0	 tubular PHT radial PHT	$ \mathbb{AG}(1,n) = \text{lines in } \mathbb{R}^n $ $ \mathbb{AG}(0,n) = \text{points in } \mathbb{R}^n $	 d _P d _P	 0 "-1"	2(n-1)

Summary

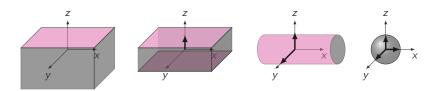
m	Name	\mathbb{P}	f_P	k	$\dim(\mathbb{P})$
-	height PHT	$\mathbb{S}^{n-1}=$ sphere in \mathbb{R}^n	h_{V}	$0, 1, \dots, n-1$	n - 1
n - 1	slabbed PHT	$\mathbb{AG}(\mathit{n}-1,\mathit{n}) = hyperplanes \ in \ \mathbb{R}^\mathit{n}$	d_P	$0, 1, \ldots, n-2$	n
 1 0	 tubular PHT radial PHT	$ \mathbb{AG}(1,n) = \text{lines in } \mathbb{R}^n $ $ \mathbb{AG}(0,n) = \text{points in } \mathbb{R}^n $	 d _P d _P	 0 "-1"	2(n-1)





Summary

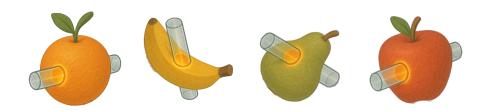
m	Name	\mathbb{P}	f_P	k	$\dim(\mathbb{P})$
-	height PHT	$\mathbb{S}^{n-1}=sphere\;in\;\mathbb{R}^n$	h_{V}	$0, 1, \dots, n-1$	n - 1
n - 1	slabbed PHT	$\mathbb{AG}(\mathit{n}-1,\mathit{n}) = hyperplanes \ in \ \mathbb{R}^\mathit{n}$	d_P	$0, 1, \ldots, n-2$	n
 1 0	 tubular PHT radial PHT	$\mathbb{AG}(1,n) = \text{lines in } \mathbb{R}^n$ $\mathbb{AG}(0,n) = \text{points in } \mathbb{R}^n$	 d _P d _P	 0 "-1"	2(n-1)



The distance-from-flat $\mathrm{PHT}_{\mathbb{AG}(m,n),\mathrm{d}}$ has a computational advantage over the classical, height $\mathrm{PHT}_{\mathbb{S}^{n-1},h}$, as it is sufficient to calculate less homological degrees k to completely capture the shape; this is more pronounced for lower m.

Distance-from-flat persistent homology transforms:

Shoving tubes through shapes gives a sufficient and efficient shape descriptor Adam Onus, Nina Otter, Renata Turkeš



$PHT_{\mathbb{AG}(m,n),d}$ is injective

Theorem (Injectivity of $PHT_{\mathbb{P},f}$)

Let $X \subset \mathbb{R}^n$ be a constructible set, \mathbb{P} a definable set, and $f_P \colon X \to \mathbb{R}$ a definable function for every $P \in \mathbb{P}$. If

(i) Euler characteristic of r-level sets, where r takes any value in some $R \subset \mathbb{R}$, completely describes the shape, i.e., the following map is injective

$$CS(\mathbb{R}^n) \to CF(\mathbb{P} \times R)$$
$$X \mapsto ((P, r) \mapsto \chi(X_r(f_P))),$$

(ii) for every $r \in R$, the Euler characteristic of the r-level set $X_r(f_P)$ can be computed from Euler characteristics of sublevel sets in \mathbb{R}^m ,

then $PHT_{\mathbb{P},f}$, truncated to homological degrees $k \in \{0,1,\ldots,m-1\}$, is injective.

$\mathrm{PHT}_{\mathbb{AG}(m,n),\mathrm{d}}$ is injective: Proof outline

```
PHT_{\mathbb{P},f}(X)
\stackrel{PHT}{\Rightarrow} (\forall P \in \mathbb{P})(\forall k \in \{0, \dots, n-1\}) : PD_{k}(X, f_{P})
\stackrel{PD}{\Rightarrow} (\forall P \in \mathbb{P})(\forall k \in \{0, \dots, n-1\})(\forall r \in R) : \beta_{k}(X_{r}^{-}(f_{P}))
\stackrel{X}{\Rightarrow} (\forall P \in \mathbb{P})(\forall r \in R) : \chi(X_{r}^{-}(f_{P}))
\stackrel{(ii)}{\Rightarrow} (\forall P \in \mathbb{P})(\forall r \in R) : \chi(X_{r}(f_{P}))
\stackrel{(ij)}{\Rightarrow} X.
```

$\mathrm{PHT}_{\mathbb{AG}(m,n),\mathrm{d}}$ is injective

$\mathrm{PHT}_{\mathbb{AG}(m,n),\mathrm{d}}$ is injective

For distance-from-flat , $R=\{0\},$ and:

$PHT_{\mathbb{AG}(m,n),d}$ is injective

For distance-from-flat , $R = \{0\}$, and:

(i) $\chi(X \cap P)$ completely describes the shape, due to Schapira's inversion formula for Radon transform,

$PHT_{\mathbb{AG}(m,n),d}$ is injective

For distance-from-flat , $R = \{0\}$, and:

- (i) $\chi(X \cap P)$ completely describes the shape, due to Schapira's inversion formula for Radon transform,
- (ii) $\chi(X \cap P)$ can be calculated from PH, since zero-level sets of d_P are zero-sublevel sets.

$\mathrm{PHT}_{\mathbb{AG}(m,n),\mathrm{d}}(X)$ is continuous

$\mathrm{PHT}_{\mathbb{P},f}$	$\mathrm{PHT}_{\mathbb{S}^{n-1},h}$	$\mathrm{PHT}_{\mathbb{AG}(m,n),\mathrm{d}}$
$f_P:X o\mathbb{R}$ is (Lipschitz) continuous	(✓) ✓	(✓) ✓
$f:\mathbb{P} o\mathcal{C}(X,\mathbb{R})$ is (Lipschitz) continuous	(✓) ✓	(X) ✓
$\operatorname{PHT}(X): \mathbb{P} o \mathcal{D}^n$ is (Lipschitz) continuous	(✓) ✓	(X) ✓
$\mathrm{PHT}:\mathcal{CS}(X) o \mathcal{C}(\mathbb{P},\mathcal{D}^n)$ is (Lipschitz) continuous	(X) X	(X) X

One can think of four "levels" of continuity within the context of PHT. The continuity of f_P and f together imply the continuity of $\operatorname{PHT}(X)$. The Lipschitz continuity of f ensures the Lipschitz continuity of $\operatorname{PHT}(X)$.

$\mathrm{PHT}_{\mathbb{AG}(m,n),\mathrm{d}}$ is not continuous

Shape $X \mid d_P$	Distance-from-flat filtration	PH(X)
00 00	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	PDs
00	X-2.50 X0.00 X2.50 X5.00	PD,

$PHT_{\mathbb{AG}(m,n),d}$ is not continuous

Shape $X \mid d_P$	Distance-from-flat filtration	PH(X)
00 00	X-5.00 X-2.50 X0.00 X2.50 X3.50 X3.50 X5.00 X-2.50 X0.00 X2.50 X3.50 X5.00 X5.	PO ₁ PO ₁ PO ₁
60 01		e de

A small shape perturbation can yield a large change in PHT:

$$\begin{split} d(X,X') < \varepsilon, \\ W_p(\mathrm{PD}_1(X,d_P),\mathrm{PD}_1(X',d_P)) = \infty. \end{split}$$

The peculiar case of radial $PHT_{\mathbb{AG}(0,n),d}$

The peculiar case of radial $PHT_{\mathbb{AG}(0,n),d}$

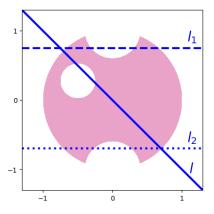
$$\mathrm{PHT}_{\mathbb{AG}(m,n),\mathrm{d}}(X) \quad \Rightarrow \quad \mathrm{PD}_k(X,d_P) \quad \Rightarrow \quad \chi(X\cap P) \quad \Rightarrow \quad X$$

The peculiar case of radial $PHT_{\mathbb{AG}(0,n),d}$

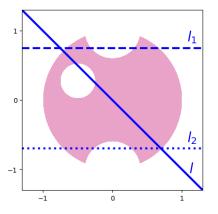
$$\mathrm{PHT}_{\mathbb{AG}(m,n),\mathrm{d}}(X) \quad \Rightarrow \quad \mathrm{PD}_k(X,d_P) \quad \Rightarrow \quad \chi(X\cap P) \quad \Rightarrow \quad X$$

When m=0, it is redundant to calculate PH, since $X\cap P$ is a singleton or an empty set, hence $\chi(X\cap P)=1$ or $\chi(X\cap P)=0$.

$\mathrm{PHT}_{\mathbb{G}(m,n),d}$ is not injective

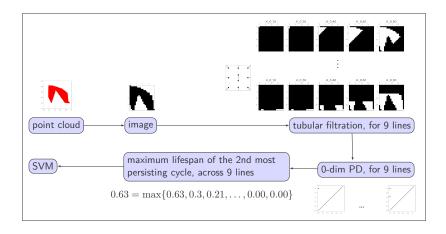


$PHT_{\mathbb{G}(m,n),d}$ is not injective

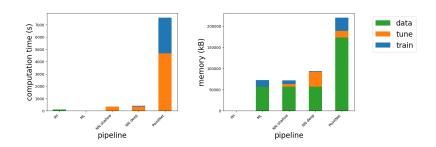


For the example shape, the lines that pass through the origin (such as the line $P=\ell\in\mathbb{G}(1,2)$) can recover the loops, but even after realignment or recentering, we would need at least one affine line (such as the dashed line $=\ell_1\in\mathbb{AG}(1,2)$) or the dotted line $=\ell_2\in\mathbb{AG}(1,2)$) to recover the two dents.

Convexity detection: $PHT_{\mathbb{AG}(1,n),d}|_0$ pipeline



Convexity detection: Computational resources



▶ Sufficient (number of) flats for injectivity.

- Sufficient (number of) flats for injectivity.
- ▶ Computational trade-off for $PHT_{\mathbb{AG}(m,n),d}$ for different m, and $PHT_{\mathbb{S}^{n-1},h}$.

- Sufficient (number of) flats for injectivity.
- ▶ Computational trade-off for $PHT_{\mathbb{AG}(m,n),d}$ for different m, and $PHT_{\mathbb{S}^{n-1},h}$.
- ▶ Discontinuity of $PHT_{AG(m,n),d}$.

- Sufficient (number of) flats for injectivity.
- ightharpoonup Computational trade-off for $\mathrm{PHT}_{\mathbb{AG}(m,n),\mathrm{d}}$ for different m, and $\mathrm{PHT}_{\mathbb{S}^{n-1},h}$.
- ▶ Discontinuity of $PHT_{\mathbb{AG}(m,n),d}$.
- ► Further parameter spaces for Euclidean shapes.

- Sufficient (number of) flats for injectivity.
- ightharpoonup Computational trade-off for $\mathrm{PHT}_{\mathbb{AG}(m,n),\mathrm{d}}$ for different m, and $\mathrm{PHT}_{\mathbb{S}^{n-1},h}$.
- ▶ Discontinuity of $PHT_{\mathbb{AG}(m,n),d}$.
- ► Further parameter spaces for Euclidean shapes.
- Beyond Euclidean shapes.