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Persistent homology [Robins (1999), Edelsbrunner, Letscher & Zomorodian (2002)]
PHk(X) {f } → D f 7→ PDk(X , f )

PHk(X) gives some information about the topology & geometry of the shape

Classical, height persistent homology transform [Turner, Mukherjee & Boyer (2014)]
PHTSn−1,h(X) Sn−1 → Dn v 7→ (PD0(X , hv ),PD1(X , hv ), . . . ,PDn−1(X , hv ))

PHTSn−1,h is injective, i.e.
PHTSn−1,h(X) is a sufficient shape descriptor

Generalised persistent homology transform [Onus, Otter & Turkeš (2024)]
PHTP,f (X) P → Dn P 7→ (PD0(X , fP),PD1(X , fP), . . . ,PDn−1(X , fP))

Distance-from-flat persistent homology transform
PHTAG(m,n),d(X) AG(m, n) → Dn P 7→ (PD0(X , dP),PD1(X , dP), . . . ,PDn−1(X , dP))

PHTAG(m,n),d, truncated to homological degrees {0, 1, . . . ,m − 1} is injective, i.e.
PHTAG(m,n),d(X)|{0,1,...,m−1} is a sufficient and efficient shape descriptor
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Motivation: Can PH detect convexity?

Step 1) First idea: Classical, height PHTSn−1,h|0

Idea
0-dim PH (connected components) wrt height filtration:

= 1 connected component ⇒ convex
> 1 connected component ⇒ concave
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Motivation: Can PH detect convexity?
Step 2) Adjustment: From height to tubular filtration

height absolute height tubular
scalar product distance from hyperplane distance from line
ηv (x) = x · v η′v (x) = |x · v | = d(x , α) τα(x) = d(x , α)

RT, Guido Montufar and Nina Otter, On the effectiveness of persistent homology, NeurIPS (2022)
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Intermezzo: Tubular PHT outperforms NNs
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Motivation: Can PH detect convexity?
Step 3) Generalization: From m = 1 to any m

fP Filtration SomePH(X , fP)

classical
(height)

slabbed
(distance-from-
hyperplane)

tubular
(distance-from-line)

Tubular, distance-from-line PHTAG(1,n),d|0 that shoves tubes through shapes is
a sufficient and efficient shape descriptor, but one can consider distance from
any m-dimensional flat.
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Summary
m Name P fP k dim(P)

- height PHT Sn−1 = sphere in Rn hv 0, 1, . . . , n − 1 n − 1

n − 1 slabbed PHT AG(n − 1, n) = hyperplanes in Rn dP 0, 1, . . . , n − 2 n
… … … … … …
1 tubular PHT AG(1, n) = lines in Rn dP 0 2(n − 1)
0 radial PHT AG(0, n) = points in Rn dP “−1” n
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The distance-from-flat PHTAG(m,n),d has a computational advantage over the
classical, height PHTSn−1,h, as it is sufficient to calculate less homological degrees
k to completely capture the shape; this is more pronounced for lower m.
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PHTAG(m,n),d is injective

Theorem (Injectivity of PHTP,f )

Let X ⊂ Rn be a constructible set, P a definable set, and fP : X → R a definable
function for every P ∈ P. If

(i) Euler characteristic of r-level sets, where r takes any value in some
R ⊂ R, completely describes the shape, i.e., the following map is injective

CS(Rn) → CF(P× R)

X 7→
(
(P , r) 7→ χ(Xr (fP))

)
,

(ii) for every r ∈ R, the Euler characteristic of the r-level set Xr (fP) can be
computed from Euler characteristics of sublevel sets in Rm,

then PHTP,f , truncated to homological degrees k ∈ {0, 1, . . . ,m − 1},
is injective.



PHTAG(m,n),d is injective: Proof outline

PHTP,f (X)

PHT⇒ (∀P ∈ P)(∀k ∈ {0, . . . , n − 1}) : PDk(X , fP)
PD⇒ (∀P ∈ P)(∀k ∈ {0, . . . , n − 1})(∀r ∈ R) : βk(X−

r (fP))
χ⇒ (∀P ∈ P)(∀r ∈ R) : χ(X−

r (fP))
(ii)⇒ (∀P ∈ P)(∀r ∈ R) : χ(Xr (fP))
(i)⇒ X .



PHTAG(m,n),d is injective

For distance-from-flat , R = {0}, and:

(i) χ(X ∩ P) completely describes the shape, due to Schapira’s
inversion formula for Radon transform,

(ii) χ(X ∩ P) can be calculated from PH, since zero-level sets of
dP are zero-sublevel sets.
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PHTAG(m,n),d(X ) is continuous

PHTP,f PHTSn−1,h PHTAG(m,n),d

fP : X → R is (Lipschitz) continuous (3) 3 (3) 3

f : P → C(X ,R) is (Lipschitz) continuous (3) 3 (7) 3

PHT(X) : P → Dn is (Lipschitz) continuous (3) 3 (7) 3

PHT : CS(X) → C(P,Dn) is (Lipschitz) continuous (7) 7 (7) 7

One can think of four “levels” of continuity within the context of PHT. The
continuity of fP and f together imply the continuity of PHT(X). The Lipschitz
continuity of f ensures the Lipschitz continuity of PHT(X).



PHTAG(m,n),d is not continuous

Shape X dP Distance-from-flat filtration PH(X)

A small shape perturbation can yield a large change in PHT:

d(X ,X ′) < ε,

Wp(PD1(X , dP),PD1(X ′, dP)) = ∞.
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The peculiar case of radial PHTAG(0,n),d

PHTAG(m,n),d(X) ⇒ PDk(X , dP) ⇒ χ(X ∩ P) ⇒ X

When m = 0, it is redundant to calculate PH, since X ∩ P is a
singleton or an empty set, hence χ(X ∩ P) = 1 or χ(X ∩ P) = 0.
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PHTG(m,n),d is not injective

For the example shape, the lines that pass through the origin (such as the line
P = ` ∈ G(1, 2)) can recover the loops, but even after realignment or re-
centering, we would need at least one affine line (such as the dashed line = `1 ∈
AG(1, 2) or the dotted line = `2 ∈ AG(1, 2)) to recover the two dents.
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Convexity detection: PHTAG(1,n),d|0 pipeline

point cloud image tubular filtration, for 9 lines

0-dim PD, for 9 lines
maximum lifespan of the 2nd most
persisting cycle, across 9 linesSVM

...

…
0.63 = max{0.63, 0.3, 0.21, . . . , 0.00, 0.00}

RT, Guido Montufar and Nina Otter, On the effectiveness of persistent homology, NeurIPS (2022)



Convexity detection: Computational resources

RT, Guido Montufar and Nina Otter, On the effectiveness of persistent homology, NeurIPS (2022)



Where to go from here

I Sufficient (number of) flats for injectivity.
I Computational trade-off for PHTAG(m,n),d for different m, and PHTSn−1,h.
I Discontinuity of PHTAG(m,n),d.
I Further parameter spaces for Euclidean shapes.
I Beyond Euclidean shapes.
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