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Shape analysis

Shape classification is a difficult problem that plays a crucial role in understanding and recognising physical structures and objects, image processing, and computer vision. Since topology is the branch of mathematics
that studies shape, it has inspired the new field of study called topological data analysis (TDA), which, as the name suggests, aims to analyse data by studying its shape. The main tool in TDA, persistent homology

(PH), captures topological and geometric features that are richer than the scalar-valued quantities that are often used in shape analysis and which struggle to describe the shape sufficiently well.

What is persistent homology?

Persistent homology (PH) captures information about k-dimensional cycles: connected com-
ponents, loops, voids and higher-dimensional voids. More precisely, PH tracks how these ho-
mological structures persist in a so-called filtration { X, },cg, a nested family of spaces that
approximate the shape X at any given scale r. |t is commonly summarized with a persistence
diagram (PD), a scatter plot of “birth" and “death" values of each cycle within the filtration.
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For the example shape, PD in homology degree 0 and 1 respectively sees the two connected
components and the three loops, and the birth and death times capture additional geometric
information such as the size of the loops.

What is the classical persistent homology transform?

For a shape X, the classical persistent homology transform, PHT(X) [1], consists of persistence
diagrams with respect to the height filtration function hy,(x) = x - v for any direction v, and
any homological degree k:

PHT(X): S"~! — D"
v (PDO(X), PD{(X),..., PDn_l(X)) ,
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and why is it cool?

Persistent homology lies at the crossroads of algebraic topology and computational geometry,
offering insights beyond traditional statistical or machine learning techniques, with applications
across many disciplines, such as medicine (to detect cancer or other anomalies), biology (to
understand protein structure or brain activity), materials science (to study the porousness of
materials), or astronomy (to analyze the large-scale structure of the universe).

In applications, persistent homology
iIs commonly a tool for:

e feature extraction, or

e data exploration.

and why is it cooler?

As persistent homology captures information about k-dimensional cycles, it provides some in-
sights into the topology and geometry, but some information is lost. For instance, PH might
not be able to discriminate between a circle, square or a triangle. On the other hand, the clas-
sical PHT, which in generalised notation we denote PHTSn_1’h, has been shown to completely
describe a shape:

Let C'S(R™) be the family of constructible sets in R". The persistent homology transform
PHTgn-1 5, : CS(R"™) — C(S"1, D") is injective.

In other words, the classical height PHT is a sufficient shape statistic. For instance, the circle
and the square, or the MNIST images of handwritten digits "0", "6" and "9", can have the
same PH with respect to the greyscale, or height filtration “from left to right", but considering
multiple filtrations or “directions” with PHT can help to differentiate between the shapes.
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What is the generalised persistent homology transform?

Let X C R” be a constructible set. Let further IP be a topological space, and {fp} pcp be
a family of functions fp : X — R. The persistent homology transform of X with parameter
space P and filtration functions { fp} pcp is the function

PHTp ¢(X): P — D"
P (PDo(X, fp),PD1(X, fp),...,PDy—1(X, fp)),

where PD.(X, fp) is the persistence diagram of X in homology degree k, with respect to
the sublevel-set filtration of the function fp.

We focus on the following special cases of PHTS:

The distance-from-flats persistent homology transform PHTAG(m,n),d is the PHT where
the domain is the affine Grassmannian space, P = AG(m,n), and the filtration functions
fp(x) = d(x, P) encode the distance from m-flats P € AG(m,n). We zoom into PHT
with respect to the distance from hyperplanes (m = n — 1), lines (m = 1) and points
(m = 0), which we refer to as the slabbed, tubular and radial persistent homology transform,
respectively.

Open questions

e Which (size of) finite subset of AG(m,n) leads to an injective transform?

e What is the computational trade-off between calculating PH up to degree m — 1, compared to
sampling flats from a higher-dimensional parameter space AG(m,n)?

e How to deal with the instability of PHT?
e How meaningful is it to extend to distance from non-linear subspaces of Euclidean space?

e What are the properties of PHT on non-Euclidean shapes, such as weighted networks or
subsets of hyperbolic space?
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and why is it the coolest?

The generalised persistent homology transform PHTp / provides a broader framework for probing
shapes, that opens doors to new research on PHT with respect to some other interesting families
of filtration functions, that go beyond the classical height function. Most importantly, for the
distance-from-flats persistent homology transform that is the focus of this work, we show:

Let C'S(R") be the family of constructible sets in R™, and m > 1. Distance-from-flats
persistent homology transform PHT yG (1, ). : CS(R") = C(AG(m, n),D"), truncated
to homological dimensions k € {0,1,...,m — 1}, is injective.

In particular, the tubular PHTAG(l,n),dv which “shoves tubes through shapes" completely de-
scribes the shape, even when truncated to homology degree 0. This comes with significant
computational advantage since it easy to compute PH in degree 0 in near-linear time with re-
spect to the number N of simplices, whereas the standard algorithm is O(N?). Therefore, the
tubular PHTAG(l,n),d is an efficient and sufficient shape statistic.
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More broadly, for m’ < m, the distance-from-flats PHT on AG(m/,n) is more efficient that
PHT on AG(m,n). For instance, PD(X) with respect to the slabbed filtration functions, i.e.,
distance from planes (top rows) cannot discriminate between a ball- and sphere-like shape: there
is always the one connected components in the filtration for both shapes; higher homological
dimensions are needed. However, PD(X) with respect to the tubular filtration functions, i.e.,
distance from lines (bottom rows) is sufficient to differentiate the two shapes: the sphere sees
a second connected component in the filtration.
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Tap into the full paper!
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